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In first part of this chapter, we consider second order linear
ordinary linear equations, i.e., a differential equation of the form

L[y ] =
d2y

dt2
+ p(t)

dy

dt
+ q(t)y = g(t).

The above equation is said to be homogeneous if g(t) = 0 and
the equation

L[y ] = 0

is called the associated homogeneous equation.
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Theorem (Existence and uniqueness of solution)

Let I be an open interval and to ∈ I . Let p(t), q(t) and g(t) be
continuous functions on I . Then for any real numbers y0 and y ′0,
the initial value problem{

y ′′ + p(t)y ′ + q(t)y = g(t), t ∈ I
y(t0) = y0, y ′(t0) = y ′0

,

has a unique solution on I .
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Theorem (Principle of superposition)

If y1 and y2 are two solutions of the homogeneous equation

L[y ] = 0,

then c1y1 + c2y2 is also a solution for any constants c1 and c2.

The principle of superposition implies that the solutions of a
homogeneous equation form a vector space. This suggests us
finding a basis for the solution space.
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Definition

Two functions u(t) and v(t) are said to be linearly dependent if
there exists constants k1 and k2, not both zero, such that
k1u(t) + k2v(t) = 0 for all t ∈ I . They are said to be linearly
independent if they are not linearly dependent.

Definition (Fundamental set of solutions)

We say that two solutions y1 and y2 form a fundamental set of
solutions of the homogeneous equation L[y ] = 0 if they are
linearly independent.
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Definition (Wronskian)

Let y1 and y2 be two differentiable functions. Then we define the
Wronskian (or Wronskian determinant) to be the function

W (t) = W (y1, y2)(t) =

∣∣∣∣ y1(t) y2(t)
y ′1(t) y ′2(t)

∣∣∣∣ = y1(t)y ′2(t)−y ′1(t)y2(t).

Theorem

Let u(t) and v(t) be two differentiable functions on open interval
I . If W (u, v)(t0) 6= 0 for some t0 ∈ I , then u and v are linearly
independent.
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Proof.

Suppose k1u(t) + k2v(t) = 0 for all t ∈ I where k1, k2 are constants.
Then we have {

k1u(t0) + k2v(t0) = 0,
k1u′(t0) + k2v ′(t0) = 0.

In other words, (
u(t0) v(t0)
u′(t0) v ′(t0

)(
k1
k2

)
=

(
0
0

)
.

Now the matrix (
u(t0) v(t0)
u′(t0) v ′(t0)

)
is non-singular since its determinant W (u, v)(t0) is non-zero by the

assumption. This implies that k1 = k2 = 0. Therefore u(t) and v(t) are

linearly independent.

Remark: The converse is false, e.g. u(t) = t3, v(t) = |t|3.
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Example

y1(t) = et and y2(t) = e−2t form a fundamental set of solutions of

y ′′ + y ′ − 2y = 0

since W (y1, y2) = et(−2e−2t)− et(e−2t) = −3e−t is not
identically zero.

Example

y1(t) = et and y2(t) = tet form a fundamental set of solutions of

y ′′ − 2y ′ + y = 0

since W (y1, y2) = et(tet + et)− et(tet) = e2t is not identically
zero.

Second Order Linear Equations



Second And Higher Order Linear Equations Second order linear equations

Example

The functions y1(t) = 3, y2(t) = cos2 t and y3(t) = −2 sin2 t are
linearly dependent since

2(3) + (−6) cos2 t + 3(−2 sin2 t) = 0.

One may justify that the Wronskian∣∣∣∣∣∣
y1 y2 y3
y ′1 y ′2 y ′3
y ′′1 y ′′2 y ′′3

∣∣∣∣∣∣ = 0.
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Example

Show that y1(t) = t1/2 and y2(t) = t−1 form a fundamental set of
solutions of

2t2y ′′ + 3ty ′ − y = 0, t > 0.

Solution: It is easy to check that y1 and y2 are solutions to the
equation. Now

W (y1, y2)(t) =

∣∣∣∣ t1/2 t−1
1
2 t−1/2 −t−2

∣∣∣∣ = −3

2
t−3/2

is not identically zero. We conclude that y1 and y2 form a
fundamental set of solutions of the equation. �
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Theorem (Abel’s Theorem)

If y1 and y2 are solutions of the equation

L[y ] = y ′′ + p(t)y ′ + q(t)y = 0,

where p and q are continuous on an open interval I , then

W (y1, y2)(t) = c exp

(
−
∫

p(t)dt

)
,

where c is a constant that depends on y1 and y2. Further,
W (y1, y2)(t) is either identically zero on I or never zero on I .
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Proof.

Since y1 and y2 are solutions, we have{
y ′′
1 + p(t)y ′

1 + q(t)y1 = 0
y ′′
2 + p(t)y ′

2 + q(t)y2 = 0.

If we multiply the first equation by −y2, multiply the second equation by
y1 and add the resulting equations, we get

(y1y ′′
2 − y ′′

1 y2) + p(t)(y1y ′
2 − y ′

1y2) = 0

W ′ + p(t)W = 0

which is a first-order linear and separable differential equation with
solution

W (t) = c exp

(
−
∫

p(t)dt

)
,

where c is a constant. Since the value of the exponential function is

never zero, W (y1, y2)(t) is either identically zero on I (when c = 0) or

never zero on I (when c 6= 0).
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Theorem

Suppose y1 and y2 are solutions of

L[y ] = y ′′ + p(t)y ′ + q(t)y = 0,

where p and q are continuous on an open interval I . Then y1 and
y2 are linearly independent if and only if W (y1, y2)(t0) 6= 0 for
some t0 ∈ I .

Second Order Linear Equations



Second And Higher Order Linear Equations Second order linear equations

Proof.

The ”if” part follows by Theorem 1.6. To prove the ”only if” part, suppose
W (y1, y2)(t) = 0 for any t ∈ I . Take any t0 ∈ I , we have

W (y1, y2)(t0) =

∣∣∣∣ y1(t0) y2(t0)
y ′
1(t0) y ′

2(t0)

∣∣∣∣ = 0.

Then system of equations{
c1y1(t0) + c2y2(t0) = 0
c1y

′
1(t0) + c2y

′
2(t0) = 0

,

has non-trivial solution for c1, c2. Now the function c1y1 + c2y2 is a solution to
the initial value problem{

y ′′ + p(t)y ′ + q(t)y = 0, t ∈ I ,
y(t0) = 0, y ′(t0) = 0.

This initial value problem has a solution y(t) ≡ 0 which is unique by Theorem

1.1. Thus c1y1 + c2y2 is identically zero and therefore y1, y2 are linearly

dependent.
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Theorem

Let y1 and y2 be solutions of

L[y ] = y ′′ + p(t)y ′ + q(t)y = 0, t ∈ I

where p and q are continuous on an open interval I . Then
W (y1, y2)(t0) 6= 0 for some t0 ∈ I if and only if every solution of
the equation is of the form c1y1 + c2y2 for some constants c1, c2.
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proof

Suppose W (y1, y2)(t0) 6= 0 for some t0 ∈ I . Let y = y(t) be a
solution of of L[y ] = 0 and write y0 = y(t0), y ′0 = y ′(t0). Since
W (t0) 6= 0, there exists constants c1, c2 such that(

y1(t0) y2(t0)
y ′1(t0) y ′2(t0)

)(
c1
c2

)
=

(
y0
y ′0

)
.

Now both y and c1y1 + c2y2 are solution to the initial problem{
y ′′ + p(t)y ′ + q(t)y = 0, t ∈ I ,
y(t0) = y0, y ′(t0) = y ′0.

Therefore y = c1y1 + c2y2 by the uniqueness part of Theorem 1.1.
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Proof

Suppose the general solution of L[y ] = 0 is y = c1y1 + c2y2. Take
any t0 ∈ I . Let u1 and u2 be solutions of L[y ] = 0 with initial
values {

u1(t0) = 1
u′1(t0) = 0

and

{
u2(t0) = 0
u′2(t0) = 1

.

The existence of u1 and u2 is guaranteed by Theorem 1.1. Thus
exists constants a11, a12, a21, a22 such that{

u1 = a11y1 + a21y2
u2 = a12y1 + a22y2

.

Second Order Linear Equations



Second And Higher Order Linear Equations Second order linear equations

In particular, we have{
1 = u1(t0) = a11y1(t0) + a21y2(t0)
0 = u2(t0) = a12y1(t0) + a22y2(t0)

and {
0 = u′

1(t0) = a11y ′
1(t0) + a21y ′

2(t0)
1 = u′

2(t0) = a12y ′
1(t0) + a22y ′

2(t0)
.

In other words,(
1 0
0 1

)
=

(
y1(t0) y2(t0)
y ′
1(t0) y ′

2(t0)

)(
a11 a12
a21 a22

)
.

Therefore the matrix (
y1(t0) y2(t0)
y ′
1(t0) y ′

2(t0)

)
is non-singular and its determinant W (y1, y2)(t0) is non-zero. �
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Theorem

Let L[y ] = y ′′ + p(t)y ′ + q(t)y, where p(t) and q(t) are
continuous on an open interval I . The solution space of the
homogeneous equation L[y ] = 0, t ∈ I is of dimension two. Let y1
and y2 be two solutions of L[y ] = 0, then the following statements
are equivalent.

1 W (y1, y2)(t0) 6= 0 for some t0 ∈ I .

2 W (y1, y2)(t) 6= 0 for all t ∈ I .

3 The functions y1 and y2 form a fundamental set of solutions,
i.e., y1 and y2 are linearly independent.

4 Every solution of the equation is of the form c1y1 + c2y2 for
some constants c1, c2, i.e., y1 and y2 span the solution space
of L[y ] = 0.

5 The functions y1 and y2 constitute a basis for the solution
space of L[y ] = 0.
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Proof

The only thing we need to prove is that there exists solutions with
W (t0) 6= 0 for some t0 ∈ I . Take any t0 ∈ I . By Theorem 1.1,
there exists solutions y1 and y2 to the homogeneous equation
L[y ] = 0 with initial conditions y1(t0) = 1, y ′1(t0) = 0 and
y2(t0) = 0, y ′2(t0) = 1 respectively. Then
W (y1, y2)(t0) = det(I ) = 1 6= 0 and we are done. �
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